C

9000038704

Parte: 
C
Un ortoedro está en un plano inclinado (observa la imagen). El ángulo de la pendiente es \(\alpha \). Las fuerzas que actúan sobre el ortoedro son la fuerza de la gravedad \(\vec{F_{G}}\) y la de la fricción \(\vec{F_{t}}\). La fuerza de gravedad se puede reemplazar por dos componentes \(\vec{F_{1}}\) y \(\vec{F_{n}}\). (La fuerza \(\vec{F_{1}}\) es paralela a la pendiente y \(\vec{F_{n}}\) es perpendicular a la pendiente). Suponiendo que \(F_{1} = 20\, \mathrm{N}\) y \(F_{n} = 55\, \mathrm{N}\) halla \(\alpha \).
\(\alpha \doteq 20^{\circ }\)
\(\alpha \doteq 21^{\circ }\)
\(\alpha \doteq 69^{\circ }\)
\(\alpha \doteq 70^{\circ }\)
\(\alpha \doteq 30^{\circ }\)
\(\alpha \doteq 29^{\circ }\)

9000038705

Parte: 
C
Un ortoedro se encuentra en un plano inclinado (observa la imagen). El ángulo de la pendiente es \(\alpha = 45^{\circ }\). Las fuerzas que actúan sobre el ortoedro son la fuerza de la gravedad \(\vec{F_{G}}\) y la de la fricción \(\vec{F_{t}}\). La fuerza de gravedad se puede reemplazar por dos componentes \(\vec{F_{1}}\) y \(\vec{F_{n}}\). (La fuerza \(\vec{F_{1}}\)es paralela a la pendiente y \(\vec{F_{n}}\) es perpendicular a la pendiente). La fricción \(F_{t}\) viene dada por la fórmula \(F_{t} = fF_{n}\). El coeficiente de la fricción es \(f = 0.5\). Consideramos la aceleración estándar de la gravedad \(g = 10\, \mathrm{m\, s^{-2}}\). Halla la aceleración del ortoedro.
\(a = \frac{5\sqrt{2}} {2} \, \mathrm{m\, s^{-2}}\)
\(a = 5\sqrt{2}\, \mathrm{m\, s^{-2}}\)
\(a = 5\sqrt{3}\, \mathrm{m\, s^{-2}}\)
\(a = 0\, \mathrm{m\, s^{-2}}\)
\(a = 5\, \mathrm{m\, s^{-2}}\)
\(a = \frac{5\sqrt{3}} {2} \, \mathrm{m\, s^{-2}}\)

9000038706

Parte: 
C
Un ortoedro se encuentra en un plano inclinado (observa la imagen). El ángulo de la pendiente es \(\alpha \). Las fuerzas que actúan sobre el ortoedro son la fuerza de la gravedad \(\vec{F_{G}}\) y la fricción \(\vec{F_{t}}\). La fuerza de gravedad se puede reemplazar por dos componentes \(\vec{F_{1}}\) y \(\vec{F_{n}}\). (La fuerza \(\vec{F_{1}}\) es paralela a la pendiente y \(\vec{F_{n}}\) es perpendicular a la pendiente). La fricción \(F_{t}\) viene dada por la fórmula \(F_{t} = fF_{n}\). El coeficiente de fricción es \(f = 0.47\). Consideramos la aceleración estándar de la gravedad \(g = 10\, \mathrm{m\, s^{-2}}\). Halla el ángulo \(\alpha \) para que el ortoedro se mueva en el plano inclinado con aceleración cero.
\(\alpha \doteq 25^{\circ }\)
\(\alpha \doteq 15^{\circ }\)
\(\alpha \doteq 20^{\circ }\)
\(\alpha \doteq 65^{\circ }\)
\(\alpha \doteq 28^{\circ }\)
\(\alpha \doteq 62^{\circ }\)

9000038707

Parte: 
C
Un ortoedro se encuentra en un plano inclinado (observa la imagen). La longitud del plano inclinado es \(l = 2\, \mathrm{m}\) y su altura es \(h = 1.2\, \mathrm{m}\). Las fuerzas que actúan sobre el ortoedro son la fuerza de gravedad \(\vec{F_{G}}\) y la fricción \(\vec{F_{t}}\). La fuerza de gravedad se puede reemplazar por dos componentes \(\vec{F_{1}}\) y \(\vec{F_{n}}\). (La fuerza \(\vec{F_{1}}\) es paralela a la pendiente y \(\vec{F_{n}}\) es perpendicular a la pendiente). La fricción \(F_{t}\) viene dada por la fórmula \(F_{t} = fF_{n}\) donde \(f\) es el coeficiente de fricción. Consideramos la aceleración estándar de la gravedad \(g = 10\, \mathrm{m\, s^{-2}}\). Halla el valor mínimo de coeficiente de fricción \(f\) para que el ortoedro no se mueva con aceleración.
\(f = 0.75\)
\(f = 0.6\)
\(f = 0.65\)
\(f = 0.7\)
\(f = 0.55\)
\(f = 0.8\)

9000036107

Parte: 
C
En un parque hay tres paneles de información \(A\), \(B\) y \(C\). La distancia en linea recta entre \(B\) y \(C\) es \(150\, \mathrm{m}\). El ángulo visual de esta distancia desde el panel \(A\) es \(55^{\circ }\). El ángulo visual de la distancia \(AC\) desde el panel \(B\) es \(39^{\circ }\). Clacula la distancia en linea recta entre los paneles \(A\) y \(B\) y redondea el resultado a los metros más cercanos.
\(183\, \mathrm{m}\)
\(147\, \mathrm{m}\)
\(195\, \mathrm{m}\)
\(218\, \mathrm{m}\)

9000035608

Parte: 
C
La ecuación \[ x^{2} - 2\mathrm{i}x + q = 0 \] con un parámetro \(q\in \mathbb{C}\) tiene una solución \(x_{1} = 1 + 2\mathrm{i}\). Determina la segunda solución \(x_{2}\) y el parámetro \(q\).
\(x_{2} = -1,\ q = -1 - 2\mathrm{i}\)
\(x_{2} = -1 - 4\mathrm{i},\ q = 9 - 6\mathrm{i}\)
\(x_{2} = 1 - 4\mathrm{i},\ q = 7 - 4\mathrm{i}\)
\(x_{2} = 1,\ q = -1 - 2\mathrm{i}\)
\(x_{2} = -1,\ q = 1 + 2\mathrm{i}\)

9000036101

Parte: 
C
Una barra de \(3\, \mathrm{m}\) está inclinada respecto al ojo de un observador: un extremo está a una distancia de \(20\, \mathrm{m}\) y el otro a una de \(18\, \mathrm{m}\). Halla el ángulo visual de la barra (el ángulo entre las líneas que conectan el ojo del observador con los extremos de la barra) y redondea el resultado a grados.
\(7^{\circ }\)
\(3^{\circ }\)
\(45^{\circ }\)
\(83^{\circ }\)

9000036102

Parte: 
C
Tres fuerzas actúan sobre el mismo cuerpo en el mismo punto y la fuerza total sobre el cuerpo es nula (las fuerzas se cancelan). Las dos primeras fuerzas son de \(8\, \mathrm{N}\) y \(10\, \mathrm{N}\) y el ángulo entre ellas mide \(55^{\circ }\). Halla la tercera fuerza.
\(16\, \mathrm{N}\)
\(15\, \mathrm{N}\)
\(17\, \mathrm{N}\)
\(18\, \mathrm{N}\)

9000036103

Parte: 
C
Tres fuerzas \(F_{1}\), \(F_{2}\) y \(F_{3}\) actúan sobre el mismo cuerpo en el mismo punto y la fuerza total sobre ele cuerpo es nula (las fuerzas se cancelan). Las dos primeras fuerzas son de \(F_{1} = 8\, \mathrm{N}\) y \(F_{2} = 10\, \mathrm{N}\) y el ángulo entre \(F_{1}\) y \(F_{2}\) mide \(55^{\circ }\). Halla el ángulo entre \(F_{3}\) y \(F_{1}\). Redondea el resultado a los grados más cercanos.
\(149^{\circ }\)
\(125^{\circ }\)
\(55^{\circ }\)
\(30^{\circ }\)