B

9000034306

Část: 
B
Která z následujících možností vyjadřuje všechna řešení rovnice \(x^{6} - 64 = 0\) s neznámou \(x\in \mathbb{C}\)?
\(x_{1, 2} =\pm 2,\ x_{3, 4} = 1\pm \mathrm{i}\sqrt{3},\ x_{5, 6} = -1\pm \mathrm{i}\sqrt{3}\)
\(x_{1, 2} =\pm 2,\ x_{3, 4} = \frac{1} {2}\pm \mathrm{i}\frac{\sqrt{3}} {2} ,\ x_{5, 6} = -\frac{1} {2}\pm \mathrm{i}\frac{\sqrt{3}} {2} \)
\(x_{1, 2} =\pm 4,\ x_{3, 4} = 1\pm \mathrm{i}\sqrt{3},\ x_{5, 6} = -1\pm \mathrm{i}\sqrt{3}\)
\(x_{1, 2} =\pm 8,\ x_{3, 4} = 2\pm 2\mathrm{i}\sqrt{3},\ x_{5, 6} = -2\pm 2\mathrm{i}\sqrt{3}\)

9000034705

Část: 
B
Množina všech řešení nerovnice \[ 2x + b > 0 \] s neznámou \(x\) a parametrem \(b\in \mathbb{R}\) je:
\(\left (-\frac{b} {2};\infty \right )\)
\(\left (\frac{b} {2};\infty \right )\)
\(\left (-\infty ; \frac{b} {2}\right )\)
\(\left (-\infty ;-\frac{b} {2}\right )\)

9000034807

Část: 
B
Vyjádřete komplexní číslo \(z = 2\mathrm{i}\) v goniometrickém tvaru.
\(2\left (\cos \frac{\pi }{2} + \mathrm{i}\sin \frac{\pi }{2}\right )\)
\(\sqrt{2}\left (\cos \frac{\pi }{2} + \mathrm{i}\sin \frac{\pi }{2}\right )\)
\(\cos \frac{\pi }{2} + \mathrm{i}\sin \frac{\pi }{2}\)
\(2\left (\cos 0 + \mathrm{i}\sin 0\right )\)

9000034905

Část: 
B
Určete kvadratickou nerovnici, jejíž množinou řešení je interval \(\left \langle -\frac{7} {6}; \frac{3} {4}\right \rangle \).
\(\left (x + \frac{7} {6}\right )\left (x -\frac{3} {4}\right )\leq 0\)
\(\left (x + \frac{7} {6}\right )\left (x -\frac{3} {4}\right )\geq 0\)
\(\left (x -\frac{7} {6}\right )\left (x + \frac{3} {4}\right )\geq 0\)
\(\left (x -\frac{7} {6}\right )\left (x + \frac{3} {4}\right )\leq 0\)

9000034701

Část: 
B
Množina všech takových parametrů \(m\), pro něž má rovnice \[ \frac{m} {x} - 8 = \frac{1} {x} -\frac{m + 3} {2} \] kořen \(x = 2\), je:
\(\left \{7\right \}\)
\(\left \{10\right \}\)
\(\left \{6\right \}\)
\(\left \{\frac{5} {2}\right \}\)

9000034809

Část: 
B
Jsou dána komplexní čísla \(z_{1} =\) \(2\left (\cos \frac{\pi }{6} + \mathrm{i}\sin \frac{\pi }{6}\right )\), \(z_{2} =\) \(\sqrt{3}\left (\cos \frac{4\pi } {3} + \mathrm{i}\sin \frac{4\pi } {3}\right )\). Určete hlavní hodnotu argumentu jejich součinu.
\(\frac{3\pi } {2}\)
\(\frac{2} {9}\pi \)
\(\frac{5} {9}\pi \)
\(3\pi \)

9000034810

Část: 
B
Jsou dána komplexní čísla \(z_{1} =\) \(2\left (\cos \frac{\pi }{4} + \mathrm{i}\sin \frac{\pi }{4}\right )\), \(z_{2} =\) \(\sqrt{2}\left (\cos \frac{7\pi } {4} + \mathrm{i}\sin \frac{7\pi } {4}\right )\). Určete hlavní hodnotu argumentu jejich podílu \(\frac{z_{1}} {z_{2}} \).
\(\frac{\pi } {2}\)
\(- \frac{\pi } {2}\)
\(-\frac{3} {2}\pi \)
\(\frac{3} {2}\pi \)

9000033808

Část: 
B
Pro extrémy funkce \(f\colon y =\sin x\) v intervalu \(\left (-\frac{\pi }{2}; \frac{\pi } {2}\right )\) platí:
V tomto intervalu funkce \(f\) nemá žádný extrém.
V tomto intervalu existuje jediné maximum a jediné minimum funkce \(f\).
V tomto intervalu existuje jediné maximum funkce \(f\) a minimum funkce \(f\) neexistuje.
V tomto intervalu existuje jediné minimum funkce \(f\) a maximum funkce \(f\) neexistuje.