Cónicas

9000120007

Parte: 
B
En un mapa de una ciudad el ayuntamiento está representado como un punto y el río que pasa por la ciudad como una recta. En la ciudad hay lugares a la misma distancia tanto del río como del ayuntamiento. De la lista siguiente define la cónica que pueda conectar todos estos lugares.
parábola
circunferencia
elipse
hipérbola
ninguna de la lista

9000117704

Parte: 
C
Dadas dos magnitudes físicas identifica cuál de las respuestas representa una relación entre las magnitudes como parte de una hipérbola. (Se supone que las otras magnitudes son constantes.)
La presión (\(p\)) y la superficie (\(S\)) en la que se ejerce la fuerza de la presión, si \(F = p\cdot S\).
La masa (\(m\)) y la energía cinética (\(E_{k}\)) de un sólido, si \(E_{k} = \frac{1} {2}\cdot m\cdot v^{2}\).
La velocidad (\(v\)) y la energía cinética (\(E_{k}\)) de un sólido, si \(E_{k} = \frac{1} {2}\cdot m\cdot v^{2}\).
La masa (\(m\)) y la energía potencial (\(E_{p}\)) en un campo de gravedad homogéneo, si \(E_{p} = m\cdot g\cdot h\).

9000117705

Parte: 
C
Dadas las magnitudes físicas, identifica cuál de las respuestas representa una relación entre magnitudes como parte de una parábola. (Se supone que las otras magnitudes son constantes.)
El trabajo eléctrico (\(W\)) y la corriente eléctrica (\(I\)), si \(W = R\cdot I^{2}\cdot t\).
La masa (\(m\)) y la aceleración (\(a\)) de un sólido, si \(F = m\cdot a\).
La altitud (\(h\)) y la energía potencial (\(E_{p}\)), si \(E_{p} = m\cdot g\cdot h\).
El trabajo eléctrico (\(W\)) y el tiempo (\(t\)), si \(W = R\cdot I^{2}\cdot t\).

9000117706

Parte: 
C
Los satélites se mueven alrededor de la Tierra con una trayectoria orbital. Consideremos un satélite a una altura \(h\) medida desde la Tierra. También consideremos el sistema de coordenadas cuyo origen es la Tierra directamente debajo del satélite y el eje \(y\) está orientado hacia arriba (al satélite). El eje \(x\) es perpendicular al eje \(y\) y está en el plano definido por la trayectoria del satélite. Omitamos la rotación de la Tierra. Encuentra la ecuación de la trayectoria del satélite. El radio de la Tierra es \(R\).
\(x^{2} + (y + R)^{2} = (R + h)^{2}\)
\(x^{2} + y^{2} = (R + h)^{2}\)
\(x^{2} + (y + R)^{2} = h^{2}\)
\(x^{2} + y^{2} = h^{2}\)

9000120005

Parte: 
B
Los organizadores de un campamento prepararon un juego. Para este juego es importante que la distancia directa entre la cocina, la tienda y la hoguera sea para todas las tiendas de campaña igual. ¿Basta esta información para determinar la curva que pasa por todas estas tiendas? ¿Es esta curva una sección cónica? Si es así en qué sección cónica están las tiendas?
Sí, todas la tiendas están en una elipse.
Sí, todas las tiendas están en una circunferencia.
Sí, todas las tiendas están en una parábola.
Sí, todas la tiendas están en una hipérbola.
No, no tenemos suficiente información para poder sacar conclusiones de esta sección cónica.

9000106903

Parte: 
C
El Movimiento Uniformemente Acelerado se describe con la siguiente ecuación \(s = \frac{1} {2}at^{2}\) y el gráfico que representa esta relación es una parábola. Encuentra la directriz de esta parábola, si la aceleración es \(a = 4\, \mathrm{m}/\mathrm{s}^{2}\) y el tiempo inicial \(t = 0\, \mathrm{s}\).
\(s = -\frac{1} {8}\)
\(s = -1\)
\(s = \frac{1} {8}\)
\(s = 1\)

9000106901

Parte: 
C
Un cuerpo lanzado con un movimiento parabólico tiene un ángulo inicial de \(\alpha = 45^{\circ }\) y una velocidad inicial de \(v_{0} = 10\, \mathrm{m}/\mathrm{s}\). Encuentra la ecuación de la parábola que describe su movimiento. Pista: Las coordenadas de un cuerpo que se mueve en el campo gravitatorio son: \[ \begin{aligned}x& = v_{0}t\cdot \cos \alpha , & \\y& = v_{0}t\cdot \sin \alpha -\frac{1} {2}gt^{2}. \\ \end{aligned} \] Consideremos la gravedad de la Tierra \(g = 10\, \mathrm{m}/\mathrm{s}^{2}\).
\((x - 5)^{2} = -10\cdot (y - 2.5)\)
\((x - 5)^{2} = 10\cdot (y + 2.5)\)
\(x^{2} = -10\cdot (y - 5)\)
\((x - 5)^{2} = -10\cdot (y + 2.5)\)

9000106902

Parte: 
C
Consideremos un planeta moviéndose alrededor del Sol en una órbita elíptica. En el perihelio (punto de la órbita más próximo al Sol) la distancia del planeta al Sol es \(4.5\, \mathrm{AU}\). La excentricidad de la elipse es \(0.5\, \mathrm{AU}\). Halla la ecuación de la trayectoria de este planeta. Usa el sistema de coordenadas cuyo centro es el Sol y el eje \(x\) es el eje mayor de la elipse.
\(\frac{(x-0.5)^{2}} {25} + \frac{y^{2}} {24.75} = 1\)
\(\frac{x^{2}} {25} + \frac{(y-0.5)^{2}} {24.75} = 1\)
\(\frac{x^{2}} {25} + \frac{y^{2}} {24.75} = 1\)
\(\frac{(x-0.5)^{2}} {24.75} + \frac{y^{2}} {25} = 1\)

9000106904

Parte: 
C
El Movimiento Rectilíneo Uniformemente Acelerado se describe por la siguiente ecuación \[ s = v_{0}t -\frac{1} {2}at^{2}. \] La gráfica que representa la distancia en función del tiempo es parte de una parábola. Halla el foco de esta parábola, si \(v_{0} = 16\, \mathrm{m}/\mathrm{s}\) y \(a = 4\, \mathrm{m}/\mathrm{s}^{2}\).
\([4;\ 31.875]\)
\([8;\ 31.875]\)
\([4;\ 63.5]\)
\([8;\ 63.5]\)