Combinatorics

9000139708

Level: 
A
The shelf contains \(15\) books. From this amount, \(9\) books are in English and \(6\) books in other languages. Find the number of possibilities how to rearrange the books on the shelf, if all English books have to be on the left and the other on the right.
\(9!\, 6!=261\:273\:600\)
\(9^{6}=531\:441\)
\(\frac{9!} {6!}=504\)
\(\frac{9!} {6!\, 3!}=84\)

9000139710

Level: 
C
The wallet contains nine coins: three \(1\)-Euro coins, three \(2\)-Euro coins and three \(5\)-Euro coins. How many different amounts can be paid if we have to pay the amount exactly and use just three coins for this payment?
\(\frac{5!} {3!\, 2!}=10\)
\(\frac{5!} {3!}=20\)
\(3^{3}=27\)
\(3!=6\)

9000139703

Level: 
A
The box contains \(5\) red crayons, \(4\) yellow crayons and \(2\) green crayons. The crayons are removed from the box and arranged in a line. How many different color patterns can be obtained by this procedure?
\(\frac{11!} {5!\, 4!\, 2!}=6\:930\)
\(5\cdot 4\cdot 2=40\)
\(5!\, 4!\, 2!=5\:760\)
\(\left (5!\, 4!\right )^{2}=8\:294\:400\)

9000139704

Level: 
C
There are \(5\) different kinds of cakes in a shop. Find the number of possibilities how to buy \(8\) cakes in this shop. (There is more than \(8\) cakes of each kind available.)
\(\frac{12!} {8!\, 4!}=495\)
\(5!\, 8!=4\:838\:400\)
\(5^{8}=390\:625\)
\(\frac{8!} {5!\, 3!}=56\)