Quadratic equations with complex roots

9000064503

Level: 
B
Find the values of the real coefficients \(a\), \(b\) and \(c\) such that the quadratic equation \[ ax^{2} + bx + c = 0 \] has solution \(x_{1, 2} =\pm \mathrm{i}\frac{\sqrt{5}} {3} \).
\(a = 9\text{, }b = 0\text{, }c = 5\)
\(a = 5\text{, }b = 0\text{, }c = 9\)
\(a = 9\text{, }b = 0\text{, }c = -5\)
\(a = 5\text{, }b = 0\text{, }c = -9\)

9000064504

Level: 
B
Find the values of the real coefficients \(a\), \(b\) and \(c\) such that the quadratic equation \[ ax^{2} + bx + c = 0 \] has solutions \(x_{1, 2} = 1\pm \frac{\mathrm{i}} {2}\).
\(a = 4\text{, }b = -8\text{, }c = 5\)
\(a = 1\text{, }b = -4\text{, }c = 5\)
\(a = 4\text{, }b = 8\text{, }c = 5\)
\(a = 1\text{, }b = 4\text{, }c = 5\)

9000039106

Level: 
B
Find the value of the parameter \(a\) which guarantees that the quadratic equation \[ x^{2} + 2ax + a = 0 \] has a pair of complex conjugate solutions with a nonzero imaginary part.
\(a\in (0;1)\)
\(a\in [ 0;1] \)
\(a\in (-\infty ;0)\cup (1;\infty )\)
Such an \(a\) does not exist

9000035605

Level: 
B
The number \(\cos \frac{7} {6}\pi + \mathrm{i}\sin \frac{7} {6}\pi \) is a solution of a quadratic equation with real valued coefficients. Find the second solution.
\(\cos \frac{5} {6}\pi + \mathrm{i}\sin \frac{5} {6}\pi \)
\(\cos \frac{1} {6}\pi + \mathrm{i}\sin \frac{1} {6}\pi \)
\(\cos \frac{7} {6}\pi + \mathrm{i}\sin \frac{7} {6}\pi \)
\(\cos \frac{11} {6} \pi + \mathrm{i}\sin \frac{11} {6} \pi \)

9000035609

Level: 
C
One of the roots of the equation \( x^{2} + px - 11 = 0\) with the parameter \(p\in \mathbb{C}\) is \(x_{1} = 3 -\mathrm{i}\sqrt{2}\). Find the second root \(x_{2}\) and the corresponding value of the parameter \(p\).
\(x_{2} = -3 -\mathrm{i}\sqrt{2},\ p = 2\mathrm{i}\sqrt{2}\)
\(x_{2} = 3 + \mathrm{i}\sqrt{2},\ p = 6\)
\(x_{2} = -3 -\mathrm{i}\sqrt{2},\ p = 6\)
\(x_{2} = 3 + \mathrm{i}\sqrt{2},\ p = -2\mathrm{i}\)
\(x_{2} = -3 -\mathrm{i}\sqrt{2},\ p = -2\mathrm{i}\sqrt{2}\)