B

9000035704

Parte: 
B
¿Cuál es la forma polar de un número complejo representado en el plano complejo por el punto \( A \) (mira la imagen)?
\(z = 2\sqrt{2}\left (\cos \frac{3\pi } {4} + \mathrm{i}\sin \frac{3\pi } {4}\right )\)
\(z = 2\sqrt{2}\left (\cos \frac{\pi }{4} -\mathrm{i}\sin \frac{\pi }{4}\right )\)
\(z = 2\sqrt{2}\left (-\cos \frac{\pi }{4} + \mathrm{i}\sin \frac{\pi }{4}\right )\)
\(z = 2\sqrt{2}\left (\cos \frac{5\pi } {4} + \mathrm{i}\sin \frac{5\pi } {4}\right )\)

9000035605

Parte: 
B
El número \(\cos \frac{7} {6}\pi + \mathrm{i}\sin \frac{7} {6}\pi \) es una solución de una ecuación cuadrática con coeficientes reales. Determina la segunda solución.
\(\cos \frac{5} {6}\pi + \mathrm{i}\sin \frac{5} {6}\pi \)
\(\cos \frac{1} {6}\pi + \mathrm{i}\sin \frac{1} {6}\pi \)
\(\cos \frac{7} {6}\pi + \mathrm{i}\sin \frac{7} {6}\pi \)
\(\cos \frac{11} {6} \pi + \mathrm{i}\sin \frac{11} {6} \pi \)

9000035805

Parte: 
B
Dados los números complejos \[ \text{$a = 2\left (\cos \frac{2\pi } {3} + \mathrm{i}\sin \frac{2\pi } {3}\right )$, $b = \sqrt{2}\left (\cos \frac{3\pi } {4} + \mathrm{i}\sin \frac{3\pi } {4}\right )$,} \] determina el producto \(ab\).
\(2\sqrt{2}\left (\cos \frac{17\pi } {12} + \mathrm{i}\sin \frac{17\pi } {12}\right )\)
\(2\sqrt{2}\left (\cos \frac{\pi }{2} + \mathrm{i}\sin \frac{\pi }{2}\right )\)
\(2\sqrt{2}\left (\cos \frac{5\pi } {7} + \mathrm{i}\sin \frac{5\pi } {7}\right )\)
\(2\sqrt{2}\left (\cos \frac{5\pi } {12} + \mathrm{i}\sin \frac{5\pi } {12}\right )\)

9000035601

Parte: 
B
Determina los valores del parámetro \(p\in \mathbb{R}\) suponiendo que la siguiente ecuación tiene soluciones complejas con una parte imaginaria distinta de cero. \[ px^{2} - 3x + 4p = 0 \]
\(p\in\left (-\infty ;-\frac{3} {4}\right )\cup \left (\frac{3} {4};\infty \right )\)
\(p\in\left (-\frac{3} {4}; \frac{3} {4}\right )\)
\(p\in\left (\frac{3} {4};\infty \right )\)
\(p\in\left \{-\frac{3} {4}; \frac{3} {4}\right \}\)
\(p\in\mathbb{R}\setminus \left \{-\frac{3} {4}; \frac{3} {4}\right \}\)

9000035806

Parte: 
B
Dados los números complejos \[ \text{ $a = 2\left (\cos \frac{5\pi } {3} + \mathrm{i}\sin \frac{5\pi } {3}\right )$, $b = 3\left (\cos \frac{11\pi } {6} + \mathrm{i}\sin \frac{11\pi } {6} \right )$,} \] determina el cociente \(\frac{a} {b}\).
\(\frac{2} {3}\left (\cos \frac{11\pi } {6} + \mathrm{i}\sin \frac{11\pi } {6} \right )\)
\(\frac{2} {3}\left (\cos \frac{\pi } {6} + \mathrm{i}\sin \frac{\pi } {6}\right )\)
\(\frac{2} {3}\left (\cos \frac{5\pi } {6} + \mathrm{i}\sin \frac{5\pi } {6}\right )\)
\(\frac{2} {3}\left (\cos \frac{7\pi } {6} + \mathrm{i}\sin \frac{7\pi } {6}\right )\)

9000034810

Parte: 
B
Dados los números complejos \(z_{1} = 2\left (\cos \frac{\pi }{4} + \mathrm{i}\sin \frac{\pi }{4}\right )\) y \(z_{2} = \sqrt{2}\left (\cos \frac{7\pi } {4} + \mathrm{i}\sin \frac{7\pi } {4}\right )\), determina el ángulo en la forma polar del cociente \(\frac{z_{1}} {z_{2}} \).
\(\frac{\pi } {2}\)
\(- \frac{\pi } {2}\)
\(-\frac{3} {2}\pi \)
\(\frac{3} {2}\pi \)

9000033808

Parte: 
B
En la siguiente lista, identifica una proposición verdadera sobre la función \(f\colon y =\sin x\) en el intervalo \(I = \left (-\frac{\pi }{2}; \frac{\pi } {2}\right )\).
La función \(f\) no tiene mínimo o máximo en \(I\).
La función \(f\) posee un único máximo y un único mínimo en \(I\).
La función \(f\) posee un único máximo y ningún mínimo en \(I\).
La función \(f\) posee un único mínimo y ningún máximo en \(I\).

9000033807

Parte: 
B
En la siguiente lista, identifica una proposición verdadera sobre la función \(f(x) =\cos x\) en el intervalo \(I = \left (-\frac{\pi }{2}; \frac{\pi } {2}\right )\).
La función \(f\) posee un único máximo y ningún mínimo en \(I\).
La función \(f\) no tiene mínimo o máximo en \(I\).
La función \(f\) posee un único máximo y un único mínimo en \(I\).
La función \(f\) posee un único mínimo y ningún máximo en \(I\).