Trojúhelníky

9000038702

Část: 
C
Kvádr položíme na nakloněnou rovinu se sklonem \(\alpha \). V tíhovém poli Země na něj bude působit tíhová síla \(\vec{F_{G}}\). Tuto sílu můžeme nahradit jejími složkami \(\vec{F_{1}}\) a \(\vec{F_{n}}\), kde \(\vec{F_{1}}\) má směr rovnoběžný s nakloněnou rovinou a \(\vec{F_{n}}\) je na ní kolmá. Pro \(F_{1}\) platí:
\(F_{1} = F_{G}\sin \alpha \)
\(F_{1} = \frac{F_{G}} {\sin \alpha } \)
\(F_{1} = F_{G}\mathop{\mathrm{tg}}\nolimits \alpha \)
\(F_{1} = \frac{F_{G}} {\mathop{\mathrm{tg}}\nolimits \alpha } \)
\(F_{1} = F_{G}\cos \alpha \)
\(F_{1} = \frac{F_{G}} {\cos \alpha } \)

9000038703

Část: 
C
Kvádr položíme na nakloněnou rovinu se sklonem \(\alpha \). V tíhovém poli Země na něj bude působit tíhová síla \(\vec{F_{G}}\), síla od podložky \(\vec{F_{p}}\) a síla tření \(\vec{F_{t}}\). Tíhovou sílu můžeme nahradit jejími složkami \(\vec{F_{1}}\) a \(\vec{F_{n}}\), kde \(\vec{F_{1}}\) má směr rovnoběžný s nakloněnou rovinou a \(\vec{F_{n}}\) je na ní kolmá. Pro \(F_{p}\) platí:
\(F_{p} = F_{G}\cos \alpha \)
\(F_{p} = \frac{F_{G}} {\cos \alpha } \)
\(F_{p} = F_{G}\mathop{\mathrm{tg}}\nolimits \alpha \)
\(F_{p} = \frac{F_{G}} {\mathop{\mathrm{tg}}\nolimits \alpha } \)
\(F_{p} = F_{G}\sin \alpha \)
\(F_{p} = \frac{F_{G}} {\sin \alpha } \)

9000038704

Část: 
C
Kvádr položíme na nakloněnou rovinu se sklonem \(\alpha \). V tíhovém poli Země na něj bude působit tíhová síla \(\vec{F_{G}}\). Tuto sílu můžeme nahradit jejími složkami \(\vec{F_{1}}\) a \(\vec{F_{n}}\), kde \(\vec{F_{1}}\) má směr rovnoběžný s nakloněnou rovinou a \(\vec{F_{n}}\) je na ní kolmá. Je-li \(F_{1} = 20\, \mathrm{N}\) a \(F_{n} = 55\, \mathrm{N}\), pak pro úhel \(\alpha \) platí:
\(\alpha \doteq 20^{\circ }\)
\(\alpha \doteq 21^{\circ }\)
\(\alpha \doteq 69^{\circ }\)
\(\alpha \doteq 70^{\circ }\)
\(\alpha \doteq 30^{\circ }\)
\(\alpha \doteq 29^{\circ }\)

9000038705

Část: 
C
Kvádr položíme na nakloněnou rovinu se sklonem \(\alpha = 45^{\circ }\). V tíhovém poli Země na něj bude působit tíhová síla \(\vec{F_{G}}\), síla od podložky \(\vec{F_{p}}\) a síla tření \(\vec{F_{t}}\). Tíhovou sílu můžeme nahradit jejími složkami \(\vec{F_{1}}\) a \(\vec{F_{n}}\), kde \(\vec{F_{1}}\) má směr rovnoběžný s nakloněnou rovinou a \(\vec{F_{n}}\) je na ní kolmá. Pro velikost třecí síly platí \(F_{t} = fF_{n}\). Součinitel smykového tření \(f = 0{,}5\). Tíhové zrychlení \(g\doteq 10\, \mathrm{m\, s^{-2}}\). Kvádr se bude pohybovat po nakloněné rovině se zrychlením o velikosti:
\(a = \frac{5\sqrt{2}} {2} \, \mathrm{m\, s^{-2}}\)
\(a = 5\sqrt{2}\, \mathrm{m\, s^{-2}}\)
\(a = 5\sqrt{3}\, \mathrm{m\, s^{-2}}\)
\(a = 0\, \mathrm{m\, s^{-2}}\)
\(a = 5\, \mathrm{m\, s^{-2}}\)
\(a = \frac{5\sqrt{3}} {2} \, \mathrm{m\, s^{-2}}\)

9000038706

Část: 
C
Kvádr položíme na nakloněnou rovinu se sklonem \(\alpha \). V tíhovém poli Země na něj bude působit tíhová síla \(\vec{F_{G}}\), síla od podložky \(\vec{F_{p}}\) a síla tření \(\vec{F_{t}}\). Tíhovou sílu můžeme nahradit jejími složkami \(\vec{F_{1}}\) a \(\vec{F_{n}}\), kde \(\vec{F_{1}}\) má směr rovnoběžný s nakloněnou rovinou a \(\vec{F_{n}}\) je na ní kolmá. Pro velikost třecí síly platí \(F_{t} = fF_{n}\). Součinitel smykového tření \(f = 0{,}47\). Tíhové zrychlení \(g\doteq 10\, \mathrm{m\, s^{-2}}\). Při jakém úhlu \(\alpha \) se může kvádr po nakloněné rovině pohybovat rovnoměrně?
\(\alpha \doteq 25^{\circ }\)
\(\alpha \doteq 15^{\circ }\)
\(\alpha \doteq 20^{\circ }\)
\(\alpha \doteq 65^{\circ }\)
\(\alpha \doteq 28^{\circ }\)
\(\alpha \doteq 62^{\circ }\)

9000038707

Část: 
C
Kvádr položíme na nakloněnou rovinu o délce \(l = 2\, \mathrm{m}\) a výšce \(h = 1{,}2\, \mathrm{m}\). V tíhovém poli Země na něj bude působit tíhová síla \(\vec{F_{G}}\), síla od podložky \(\vec{F_{p}}\) a síla tření \(\vec{F_{t}}\). Tíhovou sílu můžeme nahradit jejími složkami \(\vec{F_{1}}\) a \(\vec{F_{n}}\), kde \(\vec{F_{1}}\) má směr rovnoběžný s nakloněnou rovinou a \(\vec{F_{n}}\) je na ní kolmá. Pro velikost třecí síly platí \(F_{t} = fF_{n}\), kde \(f\) je součinitel smykového tření. Tíhové zrychlení \(g\doteq 10\, \mathrm{m\, s^{-2}}\). Jak velký musí být součinitel smykového tření \(f\), aby se kvádr nepohyboval zrychleně? Musel by být alespoň:
\(f = 0{,}75\)
\(f = 0{,}6\)
\(f = 0{,}65\)
\(f = 0{,}7\)
\(f = 0{,}55\)
\(f = 0{,}8\)

9000124501

Část: 
C
Když držíme ve vzdálenosti \(35\, \mathrm{cm}\) před obličejem tužku (ve svislé poloze) a díváme se střídavě pravým a levým okem, zjistíme, že při pohledu pravým okem se tužka kryje s levou hranou dveří a při pohledu levým okem se kryje s pravou hranou dveří. V jaké vzdálenosti před dveřmi stojíme, je-li vzdálenost mezi očima (zornicemi) \(6\, \mathrm{cm}\) a dveře mají standardizovanou šířku \(85\, \mathrm{cm}\)? Výsledek zaokrouhlete na desetiny metru.
\(5{,}3\, \mathrm{m}\)
\(5\, \mathrm{m}\)
\(0{,}5\, \mathrm{m}\)
\(4{,}5\, \mathrm{m}\)

9000124503

Část: 
C
Stožár vysílače je ukotven několika lany. Každé z kotvících lan má délku \(30\, \mathrm{m}\) a je upevněno \(2\, \mathrm{m}\) pod vrcholem vysílače. Druhý konec lana je upevněn na zemi v neznámé vzdálenosti od vysílače. Jak vysoký je vysílač, víme-li, že ve vzdálenosti \(8\, \mathrm{m}\) od ukotvení lana na zemi je toto lano ve výšce \(6\, \mathrm{m}\).
\(20\, \mathrm{m}\)
\(24\, \mathrm{m}\)
\(22{,}5\, \mathrm{m}\)
\(24{,}5\, \mathrm{m}\)

9000124504

Část: 
C
Maximální síla, kterou jsem schopen vyvinout je \(600\, \mathrm{N}\). Jakou nejmenší délku musí mít nakloněná rovina, abych pomocí ní dokázal těleso o tíze \(1\: 800\, \mathrm{N}\) zvednout do výšky \(50\, \mathrm{cm}\)? Tření mezi posouvaným tělesem a nakloněnou rovinou zanedbáváme. (Nápověda: Tíhová síla tělesa na nakloněné rovině se rozloží na dvě navzájem kolmé složky. Při posunu tělesa po nakloněné rovině musíme překonat složku \(F_{2}\) (viz obrázek).
\(\frac{3} {2}\, \mathrm{m}\)
\(\frac{2} {3}\, \mathrm{m}\)
\(\frac{1} {6}\, \mathrm{m}\)
\(\frac{20} {9} \, \mathrm{m}\)

9000124505

Část: 
C
Na obrázku je zakresleno zobrazení předmětu pomocí tenké rozptylné čočky. Body \(F\) a \(F'\) jsou tzv. ohniska čočky. Vzdálenost ohniska od čočky je tzv. ohnisková vzdálenost \(f\). Předmět o velikosti \(25\, \mathrm{cm}\) (\(y\)) a vzdálený \(50\, \mathrm{cm}\) (\(a\)) od čočky zobrazíme čočkou, jejíž ohnisková vzdálenost \(f\) je \(20\, \mathrm{cm}\). Jaká bude velikost \(y'\) vytvořeného obrazu? (Poznámka: Ve fyzice označujeme ohniskové vzdálenosti rozptylných čoček záporným číslem.)
\(\frac{50} {7} \, \mathrm{cm}\)
\(10\, \mathrm{cm}\)
\(\frac{50} {3} \, \mathrm{cm}\)
\(\frac{175} {2} \, \mathrm{cm}\)