$\frac{1+3\mathrm{i}\sqrt3}{2-\mathrm{i}\sqrt3}$

Project ID: 
3000000019
Question: 

Adam had to find the trigonometric form of the complex number $\frac{1+3\mathrm{i}\sqrt3}{2-\mathrm{i}\sqrt3}$.

In which step of his solution did Adam make a mistake?

Adam's solution:

(1) Adam converted the complex number into its algebraic form. $$\frac{1+3\mathrm{i}\sqrt3}{2-\mathrm{i}\sqrt3}=\frac{(1+3\mathrm{i}\sqrt3)(2+\mathrm{i}\sqrt3)}{(2-\mathrm{i}\sqrt3)(2+\mathrm{i}\sqrt3)}=-1+\mathrm{i}\sqrt3$$

(2) Adam calculated the modulus of the complex number. $$|-1+\mathrm{i}\sqrt3|=\sqrt{(-1)^2+(\sqrt3)^2}=2$$

(3) Adam calculated the argument of the complex number. $$\sin\varphi=\frac{\sqrt3}{2}\implies\varphi=\frac{\pi}{3}$$

(4) Finally, Adam wrote the complex number in trigonometric form. $$\frac{1+3\mathrm{i}\sqrt3}{2-\mathrm{i}\sqrt3}=2\left(\cos\frac{\pi}{3}+\mathrm{i}\sin\frac{\pi}{3}\right)$$

Answer 1: 

In step (1). The correct simplification is

$$\frac{1+3\mathrm{i}\sqrt3}{2-\mathrm{i}\sqrt3}=\frac{(1+3\mathrm{i}\sqrt3)(2+\mathrm{i}\sqrt3)}{(2-\mathrm{i}\sqrt3)(2+\mathrm{i}\sqrt3)}=\frac{2+\mathrm{i}\sqrt3+6\mathrm{i}\sqrt3-9}{4-3}=-7+\mathrm{i}7\sqrt3.$$

Answer 2: 

In step (2). The correct calculation is $$|-1+\mathrm{i}\sqrt3|=\sqrt{-1^2+(\sqrt3)^2}=\sqrt2.$$

Answer 3: 

In step (3). The argument of the complex number must be a solution to the system of equations $$\sin\varphi=\frac{\sqrt3}{2}\wedge \cos\varphi=-\frac12.$$

The solutions are $\varphi=\frac{2\pi}{3}+2k\pi;\ k\in\mathbb{Z}$.

For example, the argument is $\varphi=\frac{2\pi}{3}$.

Answer 4: 

In step (4). The correct representation is $$2\left(\sin\frac{\pi}{3}+\mathrm{i}\cos\frac{\pi}{3}\right).$$

Fixed Answer: 
All Fixed
Correct Answer: 
Answer 3
Hint: 

$$\frac{1+3\mathrm{i}\sqrt3}{2-\mathrm{i}\sqrt3}=\frac{(1+3\mathrm{i}\sqrt3)(2+\mathrm{i}\sqrt3)}{(2-\mathrm{i}\sqrt3)(2+\mathrm{i}\sqrt3)}=-1+\mathrm{i}\sqrt3=2\left(\sin\frac{2\pi}{3}+\mathrm{i}\cos\frac{2\pi}{3}\right)$$