9000079102 Level: AFind the intervals where the following function is a decreasing function. \[ f(x) = \frac{x^{2} + 1} {x} \]\([ - 1;0)\) and \((0;1] \)\([ - 1;1] \)\((-\infty ;-1] \) and \([1;\infty) \)\([1;\infty) \)
9000079103 Level: AFind the $x$ at which has the function $f$ a local maximum. \[ f(x) = x^{3} - 3x^{2} - 9x + 2 \]\(x=- 1\)\(x=- 3\)\(x=1\)\(x=3\)
9000079104 Level: AFind the $x$ at which has the function $f$ a local minimum. \[ f(x) = \frac{\ln x} {x} \]does not exist\(x = 0\)\(x = 1\)\(x =\mathrm{e}\)
9000079105 Level: AFind all the $x$ at which the function $f$ has local extrema. \[ f(x)= \left (1 - x^{2}\right )^{3} \]\(x=0\)\(x_1=0\), \(x_2=1\)\(x_1=- 1\), \(x_2=1\)\(x_1=- 1\), \(x_2=0\), \(x_3=1\)
9000079106 Level: AGiven function \(f(x)= x\mathrm{e}^{\frac{1} {x} }\), identify a true statement.The local minimum of the function \(f\) is at the point \(x = 1\), the function does not have a local maximum.The local maximum of the function \(f\) is at the point \(x = 0\), the local minimum at \(x = 1\).The local maximum of the function \(f\) is at the point \(x = 1\), the function does not have a local minimum.The function \(f\) has neither local minimum nor maximum.
9000079203 Level: AFind all real \(x\) for which the following expression equals zero. \[ 1 -\frac{2x + 1} {x - 1} \]\(x = -2\)\(x = -\frac{1} {2}\)\(x = 0\)\(x = -1\)
9000079107 Level: AWhat is the function value of the function $f$ at its local minimum? \[ f(x) = \frac{2} {\sqrt{4x - x^{2}}} \]\(1\)\(2\)\(0\)the local minimum does not exist
9000078501 Level: AWrite the following set in an interval notation. \[ \{x\in \mathbb{R};|x| > 2\} \]\((-\infty ;-2)\cup (2;\infty )\)\([ 2;\infty ] \)\((2;\infty )\)\((-\infty ;-2] \cup [ 2;\infty )\)
9000078502 Level: AWrite the following set in an interval notation. \[ \{x\in \mathbb{R};|x|\leq 4\} \]\([ - 4;4] \)\((-4;4)\)\((-\infty ;-4] \)\((-\infty ;-4)\)
9000073404 Level: AFind the sum of the following infinite series. \[ \sqrt{2} - 2 + \sqrt{8} - 4 + \sqrt{32} - 8+\cdots \]The sum does not exist.\(\frac{\sqrt{2}} {1+\sqrt{2}}\)\(\frac{\sqrt{2}} {1-\sqrt{2}}\)\(\sqrt{2} - 2\)