Ecuación cuadrática con números complejos

9000064504

Parte: 
B
Determina los valores de los coeficientes reales \(a\), \(b\) y \(c\) suponiendo que la ecuación cuadrática \[ ax^{2} + bx + c = 0 \] tiene soluciones \(x_{1, 2} = 1\pm \frac{\mathrm{i}} {2}\).
\(a = 4\text{, }b = -8\text{, }c = 5\)
\(a = 1\text{, }b = -4\text{, }c = 5\)
\(a = 4\text{, }b = 8\text{, }c = 5\)
\(a = 1\text{, }b = 4\text{, }c = 5\)

9000064505

Parte: 
A
Determina la factorización del siguiente polinomio cuadrático en el conjunto de polinomios. con coeficientes complejos. \[ 2x^{2} + 32 \]
\(2(x + 4\mathrm{i})(x - 4\mathrm{i})\)
\(2(x - 4\mathrm{i})^{2}\)
\((x + 4\mathrm{i})(x - 4\mathrm{i})\)
\(2(x + 4\mathrm{i})^{2}\)

9000064508

Parte: 
A
Resuelve la siguiente ecuación cuadrática en el plano complejo. \[ 2x^{2} + x + 1 = 0 \]
\(x_{1, 2} = \frac{-1\pm \mathrm{i}\sqrt{7}} {4} \)
\(x_{1, 2} = \frac{-1\pm \mathrm{i}\sqrt{7}} {2} \)
\(x_{1, 2} = \frac{1\pm \mathrm{i}\sqrt{7}} {4} \)
\(x_{1, 2} = \frac{1\pm \mathrm{i}\sqrt{7}} {2} \)

9000064506

Parte: 
A
Determina la factorización del siguiente polinomio cuadrático en el conjunto de polinomios con coeficientes complejos. \[ 2x^{2} + 4x + 5 \]
\(2\! \left (x + 1 + \frac{\sqrt{6}} {2} \mathrm{i}\right )\! \! \left (x + 1 -\frac{\sqrt{6}} {2} \mathrm{i}\right )\)
\(2\! \left (x - 1 + \frac{\sqrt{6}} {2} \mathrm{i}\right )\! \! \left (x - 1 -\frac{\sqrt{6}} {2} \mathrm{i}\right )\)
\(\left (x + 1 -\frac{\sqrt{6}} {2} \mathrm{i}\right )\! \! \left (x + 1 + \frac{\sqrt{6}} {2} \mathrm{i}\right )\)
\(\left (x - 1 -\frac{\sqrt{6}} {2} \mathrm{i}\right )\! \! \left (x - 1 + \frac{\sqrt{6}} {2} \mathrm{i}\right )\)