Area of Parallelogram

Project ID: 
3000000061
Question: 

Given the points $K=[1; -4]$, $L=[2; -1]$, and $N=[-3; -2]$, calculate the area of the parallelogram $KLMN$ using the cross product of suitably selected vectors.

Rebecca solved this task in the following steps:

(1) She sketched a parallelogram $KLMN$. Then, she placed vectors $\,\overrightarrow{u}$ and $\,\overrightarrow{v}$ on its sides and calculated their coordinates (see the picture):

\begin{aligned} \overrightarrow{u}&=\overrightarrow{KL}= L - K = (1; 3)\cr \overrightarrow{v}&=\overrightarrow{KN}= N - K = (-4; 2) \end{aligned}

(2) According to the assignment, she calculated the cross product of the vectors $\,\overrightarrow{u}$ and $\,\overrightarrow{v}$, because she also knew from math classes that the area of a parallelogram can be calculated as the absolute value of the cross product of vectors located on its sides: \begin{array}{ccc} 3 & 1 &3\cr 2 &-4 &2\cr \hline \end{array}

\begin{aligned}
\overrightarrow{u}\times\overrightarrow{v}\,&=\left(3\cdot(-4) - 2\cdot1; 1\cdot2 - (-4)\cdot3\right)\cr \overrightarrow{u}\times\overrightarrow{v}\,&=(-12 - 2; 2 + 12)\cr \overrightarrow{u}\times\overrightarrow{v}\,&= (-14; 14) \end{aligned}

(3) She then calculated the absolute value of the vector $(-14; 14)$: $$\left|(-14; 14)\right|=\sqrt{(-14)^2+14^2}=\sqrt{196+196}= \sqrt{196\cdot2}=14\sqrt2$$ (4) Finally, she answered that the area of the parallelogram $KLMN$ is $14\sqrt2$ square units.

Is there a mistake in Rebecca's solution? If yes, find where.

Answer 1: 

No. All the procedure is correct.

Answer 2: 

Yes. The mistake is in step (1). She incorrectly calculated the coordinates of one of the vectors.

Answer 3: 

Yes. The mistake is in step (2). She incorrectly calculated the cross product of vectors $\,\overrightarrow{u}$ and $\,\overrightarrow{v}$.

Answer 4: 

Yes. The mistake is in step (3). She incorrectly calculated the absolute value of the cross product.

Fixed Answer: 
All Fixed
Correct Answer: 
Answer 3
Hint: 

Rebecca tried to determine the cross product for vectors defined in a plane, but she did not realize that the cross product is defined only for vectors in the space.
If we want to calculate the area of a parallelogram using the cross product, we need to place the parallelogram in space. We do this by adding a third coordinate of the same value to the coordinates of all its vertices (most often we choose a third coordinate equal to zero). Let us show the correct procedure:

(1) $K=[1; -4; 0]$, $L=[2; -1; 0]$, $N=[-3; -2; 0]$

(2) \begin{aligned} &\overrightarrow{u}=\overrightarrow{KL}= L - K = (1; 3; 0)\cr &\overrightarrow{v}=\overrightarrow{KN}= N - K = (-4; 2; 0)\cr &\overrightarrow{u}\times\overrightarrow{v}:\cr &\qquad\qquad\begin{array}{cccc} 3 &0 &1 &3\cr 2 &0 &-4 &2\cr \hline \end{array}\cr &\overrightarrow{u}\times\overrightarrow{v}=(3\cdot0 - 2\cdot0; 0\cdot(-4) - 0\cdot1; 1\cdot2 - (-4)\cdot3) = (0 - 0; 0 - 0; 2 + 12) = (0; 0; 14) \end{aligned}

(3) $$A_{KLMN} =|\,\overrightarrow{u}\times\overrightarrow{v}\,|=\left|(0; 0; 14)\right|= \sqrt{0^2+0^2+14^2}=\sqrt{196} = 14 \textbf{ square units}.$$

Do you know why the area of a parallelogram can be determined by the formula $\mathbf{A_{KLMN}=|\,\overrightarrow{u}\times\overrightarrow{v}\,|}$?

Let’s place the parallelogram in the coordinate system so that it lies in $xy$ plane (see the picture).

\begin{aligned} &\overrightarrow{u}=\overrightarrow{KL}= (u_1; 0; 0)\cr &\overrightarrow{v}=\overrightarrow{KN}= (v_1; v_2; 0)\cr &\overrightarrow{u}\times\overrightarrow{v}:\cr &\qquad\begin{array}{cccc} 0 &0 &u_1 &0\cr v_2 &0 &v_1 &v_2\cr \hline \end{array}\cr &\qquad\overrightarrow{u}\times\overrightarrow{v}=(0\cdot0 - 0\cdot v_2; 0\cdot v_1 - u_1\cdot 0; u_1\cdot v_2 - 0\cdot v_1)\cr &\qquad\overrightarrow{u}\times\overrightarrow{v}= (0; 0; u_1\cdot v_2)\cr &|\,\overrightarrow{u}\times\overrightarrow{v}\,|= (0; 0; u_1\cdot v_2) =\sqrt{0^2+0^2+(u_1\cdot v_2)^2}=|u_1\cdot v_2 |, \end{aligned} where $u_1$ is the length of the side $\,\overrightarrow{u}$ of the parallelogram and $v_2$ is the size of the height to side $\,\overrightarrow{u}$ of the parallelogram. So

$$|\,\overrightarrow{u}\times\overrightarrow{v}\,|=|u_1\cdot v_2 |= \mathbf{A_{KLMN}}.$$