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How the trick goes Card Trick

Description

We have a deck of cards:

» assistant lets a volunteer from the audience to choose 5
cards at random

> assistant takes the 5 cards and picks one to give back
to the volunteer

> assistant then rearranges the 4 remaining cards
(face up) in a neat pile or line

» magician observes the four cards and names the one
card in the volunteers hand

All information is contained only in the picked card and
remaining four cards.

... let’s try!
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Theoretical maximum

How many cards (max) can be in the deck?

> assistant picks one card among five: (3) =5
» arrangements of the four cards: 4! = 24

» certainly, none of the 4 selected cards

Total 5-24 + 4 = 124 cards.
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Theoretical maximum Card Trick

Maximum
How many cards (max) can be in the deck?

> assistant picks one card among five: (3) =5
» arrangements of the four cards: 4! = 24

» certainly, none of the 4 selected cards
Total 5-24 + 4 = 124 cards.

This maximum can be achieved!

Our deck has cards 1, 2, ..., 124.
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Existence of the solution not excluded

Number of 5-tuples among n = 124 cards is

fo (124) _ 124123 -122-121 - 120 — 225,150, 024.

5 120

Number of all 4-tuples (quadruples) among n = 124 cards is
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There are precisely 24 different arrangements of a quadruple!
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Existence of the solution not excluded

Number of 5-tuples among n = 124 cards is

= 225, 150, 024.

. 124\  124.123-122-121-120
- \5 /) 120

Number of all 4-tuples (quadruples) among n = 124 cards is

124\  124-123-122-121  f
o - 24 247

4
There are precisely 24 different arrangements of a quadruple!
To every (ordered) quadruple (a1, az, a3, a4) there exists a

unique (unordered) 5-tuple {a1, a2, a3, as, x}
(and vice versa).

Card Trick

Solution might
exist
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Marriage Theorem

Let G be a bipartite graph with partite sets F and Q. In

graph G there is a perfect matching M, which saturates all

vertices in the set F if and only if |S| < [N(S)| for every

subset 5 g F Solution exists

NE LA
db

Corollary
Every regular bipartite graph with at least one edge has a
perfect matching.
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Let us set up a (regular) bipartite graph G = (FU Q, E):
Partite set F — all selections of five cards.
Partita set @ — all arrangements of four cards.

Each partite set has 124 - 123 - 122 - 121 = 225,150, 024
vertices.

Solution exists

Each (ordered) quadruple is joined by an edge to 120
5-tuples (in which this quadruple is included).

Similarly, each (unordered) 5-tuple is joined to 120
quadruples (that can be obtained from it).

See: () =5 quadruples, each in P(4) = 24 different
arrangements.



Solution exists by the Marriage Theorem Gard Trick

Let us set up a (regular) bipartite graph G = (FU Q, E):
Partite set F — all selections of five cards.
Partita set @ — all arrangements of four cards.

Each partite set has 124 - 123 - 122 - 121 = 225,150, 024
vertices.

Solution exists

Each (ordered) quadruple is joined by an edge to 120
5-tuples (in which this quadruple is included).

Similarly, each (unordered) 5-tuple is joined to 120
quadruples (that can be obtained from it).

See: () =5 quadruples, each in P(4) = 24 different
arrangements.

G is a 120-regular bipartite graph and by (corollary of)
Marriage Theorem G has a perfect matching M.

It is enough to remember |M| = 225,150, 024 edges of the
matching.
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Bipartite graph G with partite sets F a Q.
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Solution exists

Bipartite graph G with partite sets F a Q.
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How many square feet? Square yards? Square miles?



Question Card Trick

If we draw the graphs on a large canvas so that for each
vertex we use at least a square inch (120 adjacent edges),
how large the canvas would be?

Solution exists

How many square feet? Square yards? Square miles?

Answer: “Really many"”.



Question Card Trick

If we draw the graphs on a large canvas so that for each
vertex we use at least a square inch (120 adjacent edges),
how large the canvas would be?

Solution exists

How many square feet? Square yards? Square miles?

Answer: “Really many"”.

124 -123-122-121 -2 = 450, 300, 048 inch?



Question Card Trick

If we draw the graphs on a large canvas so that for each
vertex we use at least a square inch (120 adjacent edges),
how large the canvas would be?

Solution exists

How many square feet? Square yards? Square miles?

Answer: “Really many"”.

124 -123-122-121 -2 = 450, 300, 048 inch? = 347,453 yard?



Question Card Trick

If we draw the graphs on a large canvas so that for each
vertex we use at least a square inch (120 adjacent edges),
how large the canvas would be?

Solution exists

How many square feet? Square yards? Square miles?
Answer: “Really many”.

124 -123-122-121 -2 = 450, 300, 048 inch? = 347,453 yard?
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Question Card Trick

If we draw the graphs on a large canvas so that for each
vertex we use at least a square inch (120 adjacent edges),
how large the canvas would be?

Solution exists

How many square feet? Square yards? Square miles?
Answer: “Really many”.

124 -123-122-121 -2 = 450, 300, 048 inch? = 347,453 yard?
= 72 acres = 0.11 square miles
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Finding a solution using brute force

No problem finding the matching by a computer.

(hours of computer time)

We found the matching, we learned it by heart ...

...and here we are, we can do the trick!

Card Trick

Finding a solution



Thank you for your attention.
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SO|uti0n Card Trick

Wait a minute!
Nobody can learn these 225,150,024 pairs by heart!

There is a nicer and simpler solution (of course).

Solution

“It keeps me from looking at my phone every two seconds.»
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Two integers a, b are congruent modulo n if they have the
same remainder after (integer) division by positive integer n.
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We write 2 = b (mod n).
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Equivalent statements
» difference a — b is a multiple of n
> number b can be obtained from a by adding a of n.



Note about congruences Gard Trick

Congruent numbers

Two integers a, b are congruent modulo n if they have the
same remainder after (integer) division by positive integer n.
The integer n is the modulus.

We write 2 = b (mod n).

Solution

Equivalent statements
» difference a — b is a multiple of n

> number b can be obtained from a by adding a of n.

Often it is convenient to regard congruent integers as
“same” or “equal” (with respect to integer division by n).
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We denote s = xg + x1 + X0 + x3 + Xa.

The assistant evaluates i = s (mod 5), i € [0, 4]. Solution
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We denote the five by xp < x1 < x2 < x3 < Xa.
We denote s = xg + x1 + X0 + x3 + x4.

The assistant evaluates i = s (mod 5), i € [0, 4]. Solution

Assumption:
The assistant picks the card x = x; to give back.



Actual solution Card Trick

We denote the five by xp < x1 < x2 < x3 < Xa.
We denote s = xg + x1 + X0 + x3 + Xa.

The assistant evaluates i = s (mod 5), i € [0, 4]. Solution

Assumption:
The assistant picks the card x = x; to give back.

We denote by y = x — i, where y € [1,120] the rank of the
missing card.



Actual solution (continued) Cord Trick

The following congruences hold

x—y = i (mod5)
x—y = s (mod?5). (1)

We denote r=xg+x1 +x2 + X3+ x4 — X; = s — X.

Solution

X = s—r. (2)



Actual solution (continued) Cord Trick

The following congruences hold

x—y = i (mod5)
x—y = s (mod?5). (1)
We denote r=xg+x1 +x2 + X3+ x4 — X; = s — X.
Solution

X = s—r. (2)

By substitution (2) to (1) we get the following

s—r—y = s (modb5)
—r—y = 0 (modb)
—r = y (mod 5). (3)

The key observation is, that rank y of the missing card is
congruent to —r modulo 5.
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Among the remaining 120 cards there are 120/5 = 24
congruent to —r (mod 5).
These 24 cases can be encoded by the four remaining cards.

Solution
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Among the remaining 120 cards there are 120/5 = 24
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These 24 cases can be encoded by the four remaining cards.

Solution

But! The volunteer has a card with number x (not y) and
the magician doesn’t know x, only y.



Actual solution (continued) Cord Trick

Among the remaining 120 cards there are 120/5 = 24
congruent to —r (mod 5).
These 24 cases can be encoded by the four remaining cards.

Solution

But! The volunteer has a card with number x (not y) and
the magician doesn’t know x, only y.

Here the assumption of choosing card x; helps.

By this assumption we determine i (number of cards
smaller than y).

And so the magician can determine x =y + i.
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Example Card Trick

The volunteer chooses cards 12, 37, 38, 90, 105.

The assistant evaluates s = 12 + 37 +38 4+ 90 + 105 =
=2+24+34+0+0=2 (mod 5).

Solution

The assistant picks card x, = 38 to give to the volunteer and
evaluates y = x; — i = 38 — 2 = 36.



Example Card Trick

The volunteer chooses cards 12, 37, 38, 90, 105.

The assistant evaluates s = 12 + 37 +38 4+ 90 + 105 =
=2+24+34+0+0=2 (mod 5).

Solution

The assistant picks card x, = 38 to give to the volunteer and
evaluates y = x; — i = 38 — 2 = 36.

Now y =36=7-54+1=(7+1)-5+(1—-5)=8-5—4,
thus the “quotient” is k = 8.

The four cards have to be ordered as 37,12, 105, 90, which is
the 8th permutation.



24 permutatio

ns

’k ‘permutation H k ‘permutation
1 (1234 13 (3124
2 11243 14 | 3142
3 11324 1513214
4 11342 16 |3241
5 11423 17 (3412
6 | 1432 183421
7 2134 194123
8 2143 2014132
9 |2314 2114213
102341 2214231
11 (2413 23 14312
1212431 24 14321
Table: Table of permutations of four elements.

Card Trick

Solution



Example (continued) Card Trick

Now the magician observes the four cards.
Since r=124+374+90+105=24+2+4+0+ 0 = 4, he knows
that y = —4 (mod 5).

Solution



Example (continued) Card Trick

Now the magician observes the four cards.
Since r=12+37+904+105=2+2+0-+0 = 4, he knows
that y = —4 (mod 5).

By the permutation 37,12,105,90 is k = 8 and so it is easy ...

to evaluate
y=5k—r=5-8—4=36.



Example (continued) Card Trick

Now the magician observes the four cards.
Since r=12+37+904+105=2+2+0-+0 = 4, he knows
that y = —4 (mod 5).

By the permutation 37,12,105,90 is kK = 8 and so it is easy
to evaluate

Solution

y=5k—r=5.8—4=36

Because 36 > 12 and 36 4+ 1 > 37, the thirty sixth missing
card is x =y + 2 = 38.

This is how the magician “knows" it is the card 38 the
volunteer has in his/her hand.
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Generalizations Card Trick

What if the volunteer picks n cards (not necessarily 5)7

maximum number of cards n! 4 (n — 1)

3

8

27 Solution
124

725

5 046

40 327

362 888

3 628 809

O© 00 ~N O 1 WNS

—_
o

Beware!
Computations have to run modulo n (so far modulo 5 easy).
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» the assistant would present the four cards one by one?

(the magician could observe the order in which cards

are handed out)
> the assistant

» lets one volunteer to pick the five cards,
» then lets another volunteer to choose one of these cards
(provided she can see the value)?



Generalizations Card Trick

Tips what to think about:

How the problem will change if

> the cards would not be necessarily oriented the same

way’?

(by turning upside down more information encoded) Solution
» the assistant would present the four cards one by one?

(the magician could observe the order in which cards

are handed out)
> the assistant

» lets one volunteer to pick the five cards,
» then lets another volunteer to choose one of these cards
(provided she can see the value)?

> the assistant would choose two cards to give back?



Anybody wants to try the trick one more time?
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Card Trick

Anybody wants to try the trick one more time?

Solution




Thank you for your attention.
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