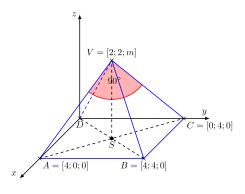

Points and vectors - level B

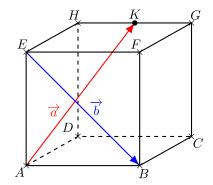
1. Given vectors \vec{a} , \vec{b} , \vec{c} , find $2\vec{a} + 3\vec{b} - \vec{c}$.



- (a) (7;7)
- (b) (7;0)
- (c) (7; -5)
- (d) (13; -5)

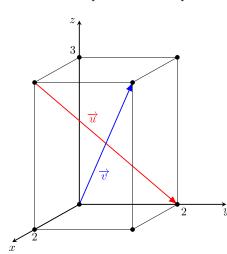
2. Given vectors \vec{a} , \vec{b} , \vec{c} , \vec{d} , find $\vec{a} + \vec{b} + \vec{c} + \vec{d}$.

- (a) (2; -3)
- (b) (-1; -2)
- (c) (17;7)
- (d) (6; 10)

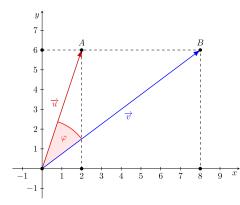

V.

(a) $m = -2\sqrt{2}$

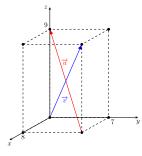
Page 2


- (b) $m = 4\sqrt{2}$
- (c) $m = 2\sqrt{2}$
- (d) $m = \sqrt{2}$

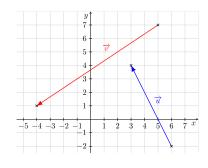
4. In the cube ABCDEFGH find the angle φ between the vectors $\overrightarrow{b} = \overrightarrow{EB}$ and $\overrightarrow{a} = \overrightarrow{AK}$, where K is the midpoint of HG. Round φ to the nearest degree. Help: Choose the appropriate coordinate system.


- (a) $\varphi \doteq 80^{\circ}$
- (b) $\varphi \doteq 76^{\circ}$
- (c) $\varphi \doteq 104^{\circ}$
- (d) $\varphi \doteq 100^{\circ}$

5. The vectors \overrightarrow{u} and \overrightarrow{v} are given by the figure. Find cosine of the angle φ between \overrightarrow{u} and \overrightarrow{v} . Help: Use the dot product of the given vectors.

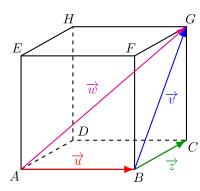

- (a) $\cos \varphi = -\frac{9}{17}$
- (b) $\cos \varphi = -\frac{\sqrt{17}}{2\sqrt{13}}$
- (c) $\cos \varphi = \frac{9}{17}$
- (d) $\cos \varphi = \frac{\sqrt{17}}{2\sqrt{13}}$

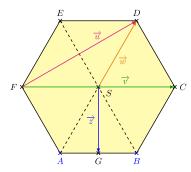
6. The vectors \overrightarrow{u} and \overrightarrow{v} are given by the figure. Find cosine of the angle φ between \overrightarrow{u} and \overrightarrow{v} . Help: Use the dot product of the given vectors.


- (a) $\cos \varphi = \frac{13\sqrt{10}}{50}$
- (b) $\cos \varphi = \frac{3\sqrt{10}}{10}$
- (c) $\cos \varphi = \frac{970}{50}$
- (d) $\cos \varphi = \frac{\sqrt{10}}{5}$

7. Find the coordinates of the vectors \overrightarrow{u} and \overrightarrow{v} given by the picture and evaluate their dot product.

- (a) $\overrightarrow{u} = (8;7;-9); \quad \overrightarrow{v} = (-8;-7;-9); \quad \overrightarrow{u} \cdot \overrightarrow{v} = (-64;-49;81)$
- (b) $\vec{u} = (-8, -7, 9); \quad \vec{v} = (8, 7, 9); \quad \vec{u} \cdot \vec{v} = (-64, -49, 81)$
- (c) $\overrightarrow{u} = (-8, -7, 9); \quad \overrightarrow{v} = (8, 7, 9); \quad \overrightarrow{u} \cdot \overrightarrow{v} = -32$
- (d) $\overrightarrow{u} = (-8, -7, 9); \quad \overrightarrow{v} = (8, 7, 9); \quad \overrightarrow{u} \cdot \overrightarrow{v} = 0$


8. Find the coordinates of the vectors \overrightarrow{u} and \overrightarrow{v} given by the picture and evaluate their dot product.


- (a) $\overrightarrow{u} = (3; -6); \quad \overrightarrow{v} = (9; 6); \quad \overrightarrow{u} \cdot \overrightarrow{v} = -9$
- (b) $\overrightarrow{u} = (-3; 6); \quad \overrightarrow{v} = (-9; -6); \quad \overrightarrow{u} \cdot \overrightarrow{v} = 9$
- (c) $\overrightarrow{u} = (-3; 6); \quad \overrightarrow{v} = (-9; -6); \quad \overrightarrow{u} \cdot \overrightarrow{v} = -9$
- (d) $\overrightarrow{u} = (3; -6); \quad \overrightarrow{v} = (9; 6); \quad \overrightarrow{u} \cdot \overrightarrow{v} = 0$

9. The vectors \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} , \overrightarrow{z} are indicated in a cube shown in the figure. The cube edge length is 1. Find the dot products of:

$$\overrightarrow{v} \cdot \overrightarrow{z}$$
, $\overrightarrow{u} \cdot \overrightarrow{v}$, $\overrightarrow{w} \cdot \overrightarrow{u}$.

- (a) $\overrightarrow{v} \cdot \overrightarrow{z} = 1$, $\overrightarrow{u} \cdot \overrightarrow{v} = 1$, $\overrightarrow{w} \cdot \overrightarrow{u} = \sqrt{3}$
- (b) $\overrightarrow{v} \cdot \overrightarrow{z} = 1$, $\overrightarrow{u} \cdot \overrightarrow{v} = 0$, $\overrightarrow{w} \cdot \overrightarrow{u} = 1$
- (c) $\overrightarrow{v} \cdot \overrightarrow{z} = \frac{\sqrt{2}}{2}$, $\overrightarrow{u} \cdot \overrightarrow{v} = 1$, $\overrightarrow{w} \cdot \overrightarrow{u} = \sqrt{3}$
- (d) $\overrightarrow{v} \cdot \overrightarrow{z} = \sqrt{2}$, $\overrightarrow{u} \cdot \overrightarrow{v} = 0$, $\overrightarrow{w} \cdot \overrightarrow{u} = 1$
- **10.** Let ABCDEF be a regular hexagon with the centre S and the side of length 3 cm. The point G is the midpoint of the segment AB. The vectors \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} , \overrightarrow{z} are indicated in the hexagon shown in the picture. Find the dot product of: $\overrightarrow{v} \cdot \overrightarrow{w}$, $\overrightarrow{v} \cdot \overrightarrow{z}$ and $\overrightarrow{v} \cdot \overrightarrow{u}$.

- (a) $\overrightarrow{v} \cdot \overrightarrow{w} = 9$, $\overrightarrow{v} \cdot \overrightarrow{z} = 0$, $\overrightarrow{v} \cdot \overrightarrow{u} = 9\sqrt{6}$
- (b) $\overrightarrow{v} \cdot \overrightarrow{w} = \frac{9}{2}, \ \overrightarrow{v} \cdot \overrightarrow{z} = 0, \ \overrightarrow{v} \cdot \overrightarrow{u} = 9\sqrt{6}$
- (c) $\overrightarrow{v} \cdot \overrightarrow{w} = \frac{9}{2}, \ \overrightarrow{v} \cdot \overrightarrow{z} = 1, \ \overrightarrow{v} \cdot \overrightarrow{u} = 27$
- (d) $\overrightarrow{v} \cdot \overrightarrow{w} = 9$, $\overrightarrow{v} \cdot \overrightarrow{z} = 0$, $\overrightarrow{v} \cdot \overrightarrow{u} = 27$

Answers (Points and vectors - level B): 1d, 2b, 3c, 4c, 5a, 6a, 7c, 8c, 9b, 10d,